Abstract

BackgroundThe mitochondrial genome is important for studying genome evolution as well as reconstructing the phylogeny of organisms. Complete mitochondrial genome sequences have been reported for more than 2200 metazoans, mainly vertebrates and arthropods. To date, from a total of about 1275 described nemertean species, only three complete and two partial mitochondrial DNA sequences from nemerteans have been published. Here, we report the entire mitochondrial genomes for two more nemertean species: Nectonemertes cf. mirabilis and Zygeupolia rubens.ResultsThe sizes of the entire mitochondrial genomes are 15365 bp for N. cf. mirabilis and 15513 bp for Z. rubens. Each circular genome contains 37 genes and an AT-rich non-coding region, and overall nucleotide composition is AT-rich. In both species, there is significant strand asymmetry in the distribution of nucleotides, with the coding strand being richer in T than A and in G than C. The AT-rich non-coding regions of the two genomes have some repeat sequences and stem-loop structures, both of which may be associated with the initiation of replication or transcription. The 22 tRNAs show variable substitution patterns in nemerteans, with higher sequence conservation in genes located on the H strand. Gene arrangement of N. cf. mirabilis is identical to that of Paranemertes cf. peregrina, both of which are Hoplonemertea, while that of Z. rubens is the same as in Lineus viridis, both of which are Heteronemertea. Comparison of the gene arrangements and phylogenomic analysis based on concatenated nucleotide sequences of the 12 mitochondrial protein-coding genes revealed that species with closer relationships share more identical gene blocks.ConclusionThe two new mitochondrial genomes share many features, including gene contents, with other known nemertean mitochondrial genomes. The tRNA families display a composite substitution pathway. Gene order comparison to the proposed ground pattern of Bilateria and some lophotrochozoans suggests that the nemertean ancestral mitochondrial gene order most closely resembles the heteronemertean type. Phylogenetic analysis proposes a sister-group relationship between Hetero- and Hoplonemertea, which supports one of two recent alternative hypotheses of nemertean phylogeny.

Highlights

  • The mitochondrial genome is important for studying genome evolution as well as reconstructing the phylogeny of organisms

  • Genome organization and structure Genome composition and gene arrangement of Nectonemertes cf. mirabilis and Zygeupolia rubens are summarized in Figure 1 and Table 1

  • Lengths of the two nemertean mitochondrial genomes are within the range of previously sequenced nemertean mtDNAs - 14558 bp in Paranemertes cf. peregrina to 16296 bp in Cephalothrix hongkongiensis [6]

Read more

Summary

Introduction

The mitochondrial genome is important for studying genome evolution as well as reconstructing the phylogeny of organisms. We report the entire mitochondrial genomes for two more nemertean species: Nectonemertes cf mirabilis and Zygeupolia rubens. Knowledge of mitochondrial genomes is important for many scientific disciplines [1,2] and the relative arrangement of mitochondrial genes has been effective for studying phylogenetic relationships [3,4]. Complete mitochondrial genomes have been published for only three species in the phylum, Cephalothrix hongkongiensis (Palaeonemertea) [reported as Cephalothrix simula in [6]], Lineus viridis (Heteronemertea) [7], and Paranemertes cf peregrina (Hoplonemertea)[8]. We sequenced the complete mitochondrial genomes of two nemertean species, Nectonemertes cf mirabilis (Hoplonemertea: Polystilifera) and Zygeupolia rubens (Heteronemertea). Mitochondrial gene arrangements, structures, and compositions, as well as translation and initiation codons and codon usage patterns, were compared with complete mtDNA sequences of other nemerteans. We compare gene order among Lophotrochozoa and we use the nucleotide sequences to analyze phylogenetic relationship among the included nemerteans

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call