Abstract
Two non-parametric statistical methods are studied in this work. These are the nearest neighbor regression and the Nadaraya Watson kernel smoothing technique. We have proven that under a precise circumstance, the nearest neighborhood estimator and the Nadaraya Watson smoothing produce a smoothed data with a same error level, which means they have the same performance. Another result of the paper is that nearest neighborhood estimator performs better locally, but it graphically shows a weakness point when a large data set is considered on a global scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.