Abstract
Previous studies on multi-model ensemble forecasting mainly focused on the weight allocation of each model, but did not discuss how to suppress the reduction of ensemble forecasting accuracy when adding poorer models. Based on a variant weight (VW) method and the equal weight (EW) method, this study explored this topic through theoretical and real case analyses. A theoretical proof is made, showing that this VW method can improve the forecasting accuracy of a multi-model ensemble, in the case of either the same models combination or adding an even worse model into the original multi-model ensemble, compared to the EW method. Comparative multi-model ensemble forecasting experiments against a real case between the VW and EW methods show that the forecasting accuracy of a multi-model ensemble applying the VW method is better than that of each individual model (including the model from the European Centre for Medium-Range Weather Forecasts). The 2 m temperature forecasting applying the VW method is superior to that applying the EW method for all the multi-model ensembles. Both theoretical proof and numerical experiments show that an improved forecast, better than a best model, is generally possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.