Abstract

The exorbitant economic and environmental cost associated with fouling propels the need to de- velop advanced numerical methods to accurately decipher the underlying phenomena of fouling and multi- phase fluid transport in jet-engine fuel systems. Clogging of jet-fuel systems results in the foulants to settle in seconds to form a porous layer which restricts fuel flow. The objective of this research is to numerically examine the transient evolution of particle-laden liquid flow and particle accumulation on an idealized jet-fuel filter. This is achieved by using two numerical approaches: coupled unresolved computational fluid dynamics-discrete element method (CFD-DEM), and coupled mixed resolved-unresolved CFD-DEM method. We assess the efficacy of both numerical methods by comparing the numerical results against experimental data. Results have shown that the particle accumulation and deposition profiles are in good agreement with the experimental results. Moreover, it is found that the particle distribution spread along the length and height of the channel reflects the actual particle spread as ob- served in the experiments. The unresolved CFD-DEM and mixed resolved-resolved CFD-DEM method could be harnessed to study complex multiphase fluid flow transport in various other applications such as compact heat exchangers and fluidized beds

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.