Abstract

Multi-granulation rough set(MGRS), as a kind of fusion mechanism of different information or data, is an useful development of Pawlak rough set theory. Firstly, this paper gives an introduction for various types of MGRS, their properties and axiomatization characterizations are studied. We show that, except for the optimistic one, each of the existing MGRS means a single granulation rough set. Then, we made a comparative analysis on the different uncertainty measures among the various multi-granulation approximation spaces. At the basis of investigating for the existing uncertainty measures, we discuss their limitations via some examples, and propose a total ordered relation among approximation spaces, even in the more general covering ones. It will be better than the original partial relation in revealing uncertainty, which conceal in the approximation space or covering one. Finally, based on the total ordered relation, we present improved information entropy, rough entropy, knowledge granulation and axiomatic definition of the knowledge granulation measures. It is proved that they are more reasonable than the original ones. Then, some novel uncertainty measures and improved fusion uncertainty measures about various granulations are also proposed. By employing these measures, granulation measures of various MGRSs are defined and studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.