Abstract
The problem of transfer learning, where information gained in one learning task is used to improve performance in another related task, is an important new area of research. While previous work has studied the supervised version of this problem, we study the more challenging case of unsupervised transductive transfer learning, where no labeled data from the target domain are available at training. We describe some current state-of-the-art inductive and transductive approaches and then adapt these models to the problem of transfer learning for protein name extraction. In the process, we introduce a novel maximum entropy based technique, iterative feature transformation (IFT), and show that it achieves comparable performance with state-of-the-art transductive SVMs. We also show how simple relaxations, such as providing additional information like the proportion of positive examples in the test data, can significantly improve the performance of some of the transductive transfer learners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.