Abstract

Variations of the metal chemical shifts δ(51V), δ(55Mn) and δ(93Nb) with the paramagnetic deshielding contribution to the overall shielding are discussed in terms of influences imposed by the ligand field splitting, the nephelauxetic effect and the covalency of the metal-to-ligand bond. Complexes under investigation are isoelectronic and/or iso-structural series [M(CO)6-nLn]q (M = V, Nb: q = -1; M = Mn: q = + 1; n = 0-6), η5-C5H5M(CO)4-nLn (M = V, Nb; n = 0-4) and η5-C5H5M(L')2L (M = V, L' = NO; M = Mn, L' = CO). L is a monodentate or l/n oligodentate phosphine. η varies with the point symmetry of the complex, and with ligand parameters of primarily electronic or steric origin. Generally, for weak to medium π-interaction, there is a decrease of shielding with decreasing π-acceptor power of the ligand, increasing ligand bulkiness, increasing ring strains in chelate structures and increasing degree of substitution. For strong π-interaction, the trends may be interconverted. PF3 is shown to be a slightly weaker π-acceptor than CO. Selected results on nuclear-spin spin coupling constants, 13C and 31P shielding are also presented

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.