Abstract
Recently, the mesoscale model GRAMM-SCI has been further developed to make use of the freely available global ERA5 reanalysis dataset issued by the ECMWF. In this study, first results are discussed for the federal state of Styria, which is situated in the eastern Alps of Austria. Additional simulations were made with the mesoscale model WRF, which serve as a benchmark in this work. The model runs covered one week in summer and another one in winter dominated by fair weather conditions. These were characterized by the development of complex mountain wind systems in the Alps, which play an important role for the dispersion of pollutants. Regarding the bias and the root mean square error both models perform very well in comparison with existing studies for Alpine areas and are able to capture the main features of observed surface flows such as valley-wind systems or katabatic flows at slopes. In addition, observed calm wind conditions at many stations during the winter period were reproduced by the models. However, the correct simulation of wind directions in these conditions was found to be extremely challenging. Existing model quality criteria for wind direction seem to be too strict for low-wind-speed conditions. Therefore, based on theoretical and empirical considerations, a new model evaluation benchmark for wind direction is proposed, which takes into account the random nature of horizontally meandering flows in stagnant weather situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.