Abstract

We present a comparative study of magnetism and optical properties for [Formula: see text] transition metal (TM) (Mn)-doped and [Formula: see text] rare-earth metals (Gd and Nd)-doped ultrathin ZnO nanowires using ab-initio density functional calculation. Our calculations indicate Nd-doped ZnO nanowires with oxygen vacancies are more favorable for ferromagnetism. Calculations including spin–orbit coupling for Nd-doped ZnO nanowires reveal not only giant anisotropy where magnetism parallel to the nanowire axis is found to be favorable but also stabilized ferromagnetism. We have calculated the absorption spectra for Mn-, Gd- and Nd-doped ZnO nanowires and found that the absorption intensity increases upon increasing the concentration of dopant ions. While Mn-doped ZnO nanowire allows absorption of light in the large energy window ranging from visible to ultraviolet, Gd- and Nd-doped systems absorb light primarily in the ultraviolet region. Our result indicates transition-metal-doped as well as rare-earth-doped ZnO nanowires may be ideal for spintronics and optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call