Abstract

In this paper, different machine learning algorithms such as Linear Discriminant Analysis, Support vector machine (SVM), Multi-layer perceptron, Random forest, K-nearest neighbour, and Autoencoder with SVM have been compared. This comparison was conducted to seek a robust method that would produce good classification accuracy. To this end, a robust method of classifying raw Electroencephalography (EEG) signals associated with imagined movement of the right hand and relaxation state, namely Autoencoder with SVM has been proposed. The EEG dataset used in this research was created by the University of Tubingen, Germany. The best classification accuracy achieved was 70.4% with SVM through feature engineering. However, our prosed method of autoencoder in combination with SVM produced a similar accuracy of 65% without using any feature engineering technique. This research shows that this system of classification of motor movements can be used in a Brain-Computer Interface system (BCI) to mentally control a robotic device or an exoskeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.