Abstract
Accurate forecasts of solar energy are important for photovoltaic (PV) based energy plants to facilitate an early participation in energy auction markets and efficient resource planning. The study concentrates on Long Short Term Memory (LSTM), a novel forecasting method from the family of deep neural networks, and compares its forecasting accuracy to alternative methods with a proven track record in solar energy forecasting. To provide a comprehensive and reliable assessment of LSTM, the study employs remote-sensing data for testing predictive accuracy at 21 locations, 16 of which are in mainland Europe and 5 in the US. To that end, a novel framework to conduct empirical forecasting comparisons is introduced, which includes the generation of virtual PV plants. The framework enables richer comparisons with higher coverage of geographical regions. Empirical results suggest that LSTM outperforms a large number of alternative methods with substantial margin and an average forecast skill of 52.2% over the persistence model. An implication for energy management practice is that LSTM is a promising technique, which deserves a place in forecasters’ toolbox. From an academic point of view, LSTM and the proposed framework for experimental design provide a valuable environment for future studies that assess new forecasting technology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.