Abstract

In order to inhibit its decomposition and improve its compatibility with the metal matrix during laser cladding, WS2 powder was encapsulated with a layer of micro Ni–P by electroless plating. The microstructure and tribological properties of the NiCr–Cr3C2/30%WS2 and NiCr–Cr3C2/30%WS2(Ni–P) high temperature self-lubricating wear-resistant composite coatings at RT (room temperature), 300°C and 600°C were investigated, respectively. It was found that the NiCr–Cr3C2/30%WS2(Ni–P) coating had a microstructure consisting of primary Cr7C3 dendrite, γ-(Fe,Ni)/Cr7C3 eutectic and solid lubricant particles WS2 and CrS, Ni–P electroless plating had decreased the decomposition of WS2 to some extent, the WS2 solid lubricant particles dispersed in the ductile γ-(Fe,Ni)/Cr7C3 matrix. Friction and wear experiments indicated that the tribological properties of the NiCr–Cr3C2/30%WS2(Ni–P) coating was better than that of NiCr–Cr3C2/30%WS2 coating, the NiCr–Cr3C2/30%WS2(Ni–P) coating presents lower friction coefficient at RT and 300°C and lower wear rate from RT to the elevated temperature of 600°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call