Abstract
The stability of fullerenes (C60 and C70) under swift heavy ion irradiation is investigated. C60 and C70 thin films were irradiated with 120 MeV Ag ions at fluences from 1×1012 to 3×1013 ions/cm2. The damage cross-section and radius of damaged cylindrical zone were found to be higher for C60 than C70 as evaluated by Raman spectroscopy, which shows that the C70 molecule is more stable under energetic ion impact. The higher damage cross-section of the C60 molecule compared with that of the C70 molecule is explained on the basis of thermal conductivity in the framework of the thermal spike model. The surface morphology of pristine C60 and C70 films is studied by atomic force microscopy. UV-visible absorption studies revealed that band gap for C60 and C70 fullerenes thin films decreases with increasing ion fluence. Resistivity of C60 and C70 thin films decreases with increasing ion fluence but the decrease is faster for C60 than C70, indicating higher damage in C60. Irradiation at a fluence of 3×1013 ions/cm2 results in complete damage of fullerenes (C60 and C70) into amorphous carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.