Abstract
Voxel-mirrored homotopic connectivity (VMHC) is utilized to assess the functional connectivity of neural networks by quantifying the similarity between corresponding regions in the bilateral hemispheres of the brain. The exploration of VMHC abnormalities in basal ganglia ischemic stroke (BGIS) patients across different cerebral hemispheres has been limited. This study seeks to establish a foundation for understanding the functional connectivity status of both brain hemispheres in BGIS patients through the utilization of VMHC analysis utilizing resting-state functional magnetic resonance imaging (rs-fMRI). This study examined a total of 38 patients with left basal ganglia ischemic stroke (LBGIS), 44 patients with right basal ganglia ischemic stroke (RBGIS), and 41 individuals in a healthy control (HC) group. Rs-fMRI studies were performed on these patients, and the pre-processed rs-fMRI data were analyzed using VMHC method. Subsequently, the VMHC values were compared between three groups using a one-way ANOVA and post hoc analysis. Correlation analysis with clinical scales was also conducted. The results indicated that compared to the HC group, significant differences were detected in postcentral gyrus, extending to precentral gyrus in both BGIS groups. Post hoc analysis showed that in the pairwise ROI-based comparison, individuals with LBGIS and RBGIS exhibited reduced VMHC values compared to HC groups. There was no significant difference between the LBGIS and RBGIS groups. In the LBGIS group, the VMHC value showed a negative correlation with NIHSS and a positive correlation with BI. The analysis of VMHC in rs-fMRI revealed a pattern of brain functional remodeling in patients with unilateral BGIS, marked by reduced synchronization and coordination between hemispheres. This may contribute to the understanding of the neurological mechanisms underlying motor dysfunction in these patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.