Abstract

The present work is aimed that out of diffusive and advective transport which is dominant process for indoor radon entry under normal room conditions. For this purpose the radon diffusion coefficient and permeability of concrete were measured by specially designed experimental set up. The radon diffusion coefficient of concrete was measured by continuous radon monitor. The measured value was (3.78 ± 0.39)×10-8 m2/s and found independent of the radon gas concentration in source chamber. The radon permeability of concrete varied between 1.85×10-17 to 1.36×10-15 m2 for the bulk pressure difference fewer than 20Pa to 73.3kPa. From the measured diffusion coefficient and absolute permeability, the radon flux from the concrete surface having concentrations gradient 12-40 kBq/m3 and typical floor thickness 0.1 m was calculated by the application of Fick and Darcy laws. Using the measured flux attributable to diffusive and advective transport, the indoor radon concentration for a typical Indian model room having dimension (5×6×7) m3 was calculated under average room ventilation (0.63 h-1). The results showed that the contribution of diffusive transport through intact concrete is dominant over the advective transport, as expected from the low values of concrete permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call