Abstract

Abstract X-ray diffraction and Mössbauer spectroscopy techniques were used to study the structure and hyperfine interactions of multiferroic Aurivillius compounds Bim+1Ti3Fem-3O3m+3. Samples were synthesized by two methods, that is, the solid-state sintering at various temperatures and mechanical activation in a high-energy ball mill. The compounds were obtained from a mixture of three polycrystalline powder oxides, that is, TiO2, Fe2O3 and Bi2O3. At room temperature, the Aurivillius compounds are paramagnetic materials with orthorhombic crystal structure. The c lattice parameter of the unit cell depends linearly on the m − number of layers with perovskite-like structure. Based on the Mössbauer studies, it is concluded that the hyperfine interactions parameters do not change with m number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.