Abstract

This paper presents a comparative study of three high-accuracy frequency estimation methods for application in vibration analysis of rotating machinery. The first two techniques are non-parametric methods based on the fast Fourier transform (FFT) : the interpolated fast Fourier transform (IFFT) and the iterative weighted phase averager (IWPA). The third method is a parametric high-resolution technique known as ESPRIT. The FFT-based methods combine techniques to reduce the effects of windowing with an iterative procedure which, at each iteration, detects the strongest peak and subtracts its effect (to reduce the interference resulting from spectral leakage). The paper compares their variance, resolution and computational requirements by means of simulation examples and also using end winding vibration data taken from a hydroelectric turbogenerator. It is found that, in situations with a moderate or high level of spectral interference, the IWPA method outperforms the IFFT and is even competitive with ESPRIT. Moreover, the IWPA has the ability to separate sinusoids more closely spaced than the periodogram's resolution limit. The IFFT method, on the other hand, has the lowest computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.