Abstract

Co-free perovskites with chemical composition Ba0.5Sr0.5Fe0.8M0.2O3-δ (M = Ni, Cu, Zn) were synthesized by the modified Pechini method, and their structure and microstructure were characterized by XRD and SEM. Oxygen content, electrical resistivity and Thermal Expansion Coefficient (TEC) were evaluated in air between room temperature and 900 °C. The high-temperature properties of these perovskites were compared with those of Co containing Ba0.5Sr0.5Fe0.8Co0.2O3-δ perovskite. The highest electrical conductivity was obtained for Ba0.5Sr0.5Fe0.8Cu0.2O3-δ, with values of 47.6 Scm−1 at 544 °C. This same composition also exhibits the highest oxygen vacancies concentration: 3-δ = 2.61 at room temperature. In contrast, the Ba0.5Sr0.5Fe0.8Zn0.2O3-δ, showed lower electrical conductivity suggesting that the Zn+2 ions block electron transport. Co-free perovskites seem to be stable at high temperatures for long term periods. However, these compounds suffered degradation at room temperature in samples stored in air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.