Abstract
Abstract Source-tract decomposition (or glottal flow estimation) is one of the basic problems of speech processing. For this, several techniques have been proposed in the literature. However, studies comparing different approaches are almost nonexistent. Besides, experiments have been systematically performed either on synthetic speech or on sustained vowels. In this study we compare three of the main representative state-of-the-art methods of glottal flow estimation: closed-phase inverse filtering, iterative and adaptive inverse filtering, and mixed-phase decomposition. These techniques are first submitted to an objective assessment test on synthetic speech signals. Their sensitivity to various factors affecting the estimation quality, as well as their robustness to noise are studied. In a second experiment, their ability to label voice quality (tensed, modal, soft) is studied on a large corpus of real connected speech. It is shown that changes of voice quality are reflected by significant modifications in glottal feature distributions. Techniques based on the mixed-phase decomposition and on a closed-phase inverse filtering process turn out to give the best results on both clean synthetic and real speech signals. On the other hand, iterative and adaptive inverse filtering is recommended in noisy environments for its high robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.