Abstract
In multi-label classification problems, every instance is associated with multiple labels at the same time. Binary classification, multi-class classification and ordinal regression problems can be seen as unique cases of multi-label classification where each instance is assigned only one label. Text classification is the main application area of multi-label classification techniques. However, relevant works are found in areas like bioinformatics, medical diagnosis, scene classification and music categorization. There are two approaches to do multi-label classification: The first is an algorithm-independent approach or problem transformation in which multi-label problem is dealt by transforming the original problem into a set of single-label problems, and the second approach is algorithm adaptation, where specific algorithms have been proposed to solve multi-label classification problem. Through our work, we not only investigate various research works that have been conducted under algorithm adaptation for multi-label classification but also perform comparative study of two proposed algorithms. The first proposed algorithm is named as fuzzy PSO-based ML-RBF, which is the hybridization of fuzzy PSO and ML-RBF. The second proposed algorithm is named as FSVD-MLRBF that hybridizes fuzzy c-means clustering along with singular value decomposition. Both the proposed algorithms are applied to real-world datasets, i.e., yeast and scene dataset. The experimental results show that both the proposed algorithms meet or beat ML-RBF and ML-KNN when applied on the test datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.