Abstract

This project studied domestic wastewater treatment by horizontal subsurface flow (HSSF) constructed wetlands (CW) and compared the effect of four different plant species on the operating conditions, dissolved oxygen (DO), and redox potential (ORP), and their efficiency on pollutants removal. Five HSSF CWs were fed for 10 months with low loaded synthetic domestic wastewater, using theoretical hydraulic residence time of 7.6 days. The plant species under study were the following: Phragmites australis (CW1), Lythrum salicaria (CW3), Cladium mariscus (CW4) and Iris pseudacorus (CW5). CW2 was not planted and this was used as control. Qualitative measurements determined a greater growth of Lythrum salicaria and Iris pseudacorus than the others. Dissolved oxygen concentrations were very low in the entire bulk liquid of all the CWs. Also ORP values were very similar in all wetlands, dealing with facultative anaerobic environments. All planted wetlands improved pollutants removal compared with the unplanted control wetland. The performances in terms of COD, TN, TP and SO4 2− removal obtained by the different CWs were in the ranges 80-90%, 35-55%, 15-40% and 45-60% respectively. Lythrum salicaria and Iris pseudacorus, which exhibited greater growth, were always the most efficient species that improved not only nutrients plant uptake but also other microbial removal processes probably due to a higher aeration potential, such as nitrification or aerobic respiration. Sulphate reduction was the most important mechanism for COD removal. Cladium mariscus, an autochthonous plant that grows in the south-central Iberian Peninsula, was less efficient than Lythrum salicaria and Iris pseudacorus, but improved the unplanted wetland wastewater efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call