Abstract
With the technology advances, new approaches for automatic recognition of a person's identity have been proposed and such a fact has encouraged the use of Biometrics Systems. This approach uses physical or behavioural characteristics of the user in order to recognize or authenticate their identity. The Biometric Systems can be classified as Unimodal or Multimodal. The Unimodal Systems use a single biometric modality to perform the recognition, while the Multimodal ones use two or more modalities. A Multimodal Biometric System can be constructed in different ways, according to its architecture, fusion level and fusion strategies. The main of this work is to investigate and compare different feature level fusion strategies, in order to design a Multimodal Biometric System with high performance. In this paper, we used the discrete wavelet transform to extract the feature sets from iris and face images. Experimental results show that Multimodal Biometric Systems outperform Unimodal Biometric Systems according to recognition rate computed over the outputs produced by the induced Support Vector Machine classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.