Abstract

Fatigue damage sensing and measurement in aluminum alloys is critical to estimating the residual useful lifetime of a range of aircraft structural components. In this work, we present electrical impedance and ultrasonic measurements in aluminum alloy 2024 that has been fatigued under high cycle conditions. While ultrasonic measurements can indicate fatigue-induced damage through changes in stiffness, the primary indicator is ultrasonic attenuation. We have used laser ultrasonic methods to investigate changes in ultrasonic attenuation since simultaneous measurement of longitudinal and shear properties provides opportunities to develop classification algorithms that can estimate the degree of damage. Electrical impedance measurements are sensitive to changes in the conductivity and permittivity of materials - both are affected by the microstructural damage processes related to fatigue. By employing spectral analysis of impedance over a range of frequencies, resonance peaks can be identified that directly reflect the damage state in the material. In order to compare the impedance and ultrasonic measurements for samples subjected to tension testing, we use processing and classification tools that are matched to the time-varying spectral nature of the measurements. Specifically, we process the measurements to extract time-frequency features and estimate stochastic variation properties to be used in robust classification algorithms. Results are presented for fatigue damage identification in aluminum lug joint specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.