Abstract
There are more than 2,000 listed companies on the UK’s London Stock Exchange, divided into 11 sectors who are required to communicate their financial results at least twice in a single financial year. UK annual reports are very lengthy documents with around 80 pages on average. In this study, we aim to benchmark a variety of summarisation methods on a set of different pre-trained transformers with different extraction techniques. In addition, we considered multiple evaluation metrics in order to investigate their differing behaviour and applicability on a dataset from the Financial Narrative Summarisation (FNS 2020) shared task, which is composed of annual reports published by firms listed on the London Stock Exchange and their corresponding summaries. We hypothesise that some evaluation metrics do not reflect true summarisation ability and propose a novel BRUGEscore metric, as the harmonic mean of ROUGE-2 and BERTscore. Finally, we perform a statistical significance test on our results to verify whether they are statistically robust, alongside an adversarial analysis task with three different corruption methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.