Abstract

BackgroundIn a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the efficacy of enzymatic hydrolysis and microbial fermentation. Comparison of different biomass pretreatment techniques by studying the impact of pretreatment on downstream operations at industrially relevant conditions and performing comprehensive mass balances will help focus attention on necessary process improvements, and thereby help reduce the cost of biofuel production.ResultsAn on-going collaboration between the three US Department of Energy (DOE) funded bioenergy research centers (Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI) and BioEnergy Science Center (BESC)) has given us a unique opportunity to compare the performance of three pretreatment processes, notably dilute acid (DA), ionic liquid (IL) and ammonia fiber expansion (AFEXTM), using the same source of corn stover. Separate hydrolysis and fermentation (SHF) was carried out using various combinations of commercially available enzymes and engineered yeast (Saccharomyces cerevisiae 424A) strain. The optimal commercial enzyme combination (Ctec2: Htec2: Multifect Pectinase, percentage total protein loading basis) was evaluated for each pretreatment with a microplate-based assay using milled pretreated solids at 0.2% glucan loading and 15 mg total protein loading/g of glucan. The best enzyme combinations were 67:33:0 for DA, 39:33:28 for IL and 67:17:17 for AFEX. The amounts of sugar (kg) (glucose: xylose: total gluco- and xylo-oligomers) per 100 kg of untreated corn stover produced after 72 hours of 6% glucan loading enzymatic hydrolysis were: DA (25:2:2), IL (31:15:2) and AFEX (26:13:7). Additionally, the amounts of ethanol (kg) produced per 100 kg of untreated corn stover and the respective ethanol metabolic yield (%) achieved with exogenous nutrient supplemented fermentations were: DA (14.0, 92.0%), IL (21.2, 93.0%) and AFEX (20.5, 95.0%), respectively. The reason for lower ethanol yield for DA is because most of the xylose produced during the pretreatment was removed and not converted to ethanol during fermentation.ConclusionsCompositional analysis of the pretreated biomass solids showed no significant change in composition for AFEX treated corn stover, while about 85% of hemicellulose was solubilized after DA pretreatment, and about 90% of lignin was removed after IL pretreatment. As expected, the optimal commercial enzyme combination was different for the solids prepared by different pretreatment technologies. Due to loss of nutrients during the pretreatment and washing steps, DA and IL pretreated hydrolysates required exogenous nutrient supplementation to ferment glucose and xylose efficiently, while AFEX pretreated hydrolysate did not require nutrient supplementation.

Highlights

  • In a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the efficacy of enzymatic hydrolysis and microbial fermentation

  • Ammonia fiber expansion (AFEX) pretreatment is a dry to dry process during which minimal carbohydrate degradation takes place [12] and negligible modifications in total polysaccharide composition are seen compared to untreated biomass

  • The reduced acid insoluble or Klason lignin levels observed after AFEX pretreatment may result from currently unknown chemical modifications at the lignin level that improve lignin solubility during sample preparation prior to composition analysis based on current National Renewable

Read more

Summary

Introduction

In a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the efficacy of enzymatic hydrolysis and microbial fermentation. Crude oil is the primary feedstock source for producing transportation fuels, industrial chemicals and polymers. Political/social tensions in major oil-producing nations, and greenhouse gas emissions driving climate change have triggered worldwide research towards the development of alternative, sustainable sources of energy [1]. Unlike corn grain-based ethanol, where the starch can be readily hydrolyzed to fermentable sugars using enzymes, the production of lignocellulosic ethanol is limited by biomass recalcitrance. Numerous pretreatment processes have been developed to overcome biomass recalcitrance, such as: steam explosion, hot water, dilute acid (DA), lime, phosphoric acid, ammonia (for example, ammonia fiber expansion (AFEXTM), soaking in aqueous ammonia (SAA) and ammonia recycled percolation (ARP)) and ionic liquid (IL)-based pretreatments [5,6]. Most pretreatments pose various challenges in terms of costs incurred by use of excess water, expensive chemicals and chemical recovery, feedstock handling, energy requirements and downstream processing [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.