Abstract

Financial time series data are known to exhibit volatility clustering, which implies that the volatility of financial returns tends to persist over time. This phenomenon has significant implications for risk management and financial decision-making. To capture this volatility clustering effect, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model is widely used. Through a Monte Carlo simulation experiment, the performance GARCH-type model with five different error distribution specifications were compared. The study found that the Skewed Generalized Error Distribution (SGED) was the most efficient and consistent distribution for modelling financial time series. The SGED outperformed the Normal, Student's t, GED, and skewed Student's t distributions in terms of goodness-of-fit, MSE, MAE and different sample sizes. The study suggests that the SGED may be more suitable for modelling financial time series with a GARCH-type specification in general contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.