Abstract

—This paper proposes two real-time energy-oriented driving strategies to minimize the energy consumption for electric vehicles on highways with varying slopes. First, a novel strategy, called normalized-energy consumption minimization strategy (NCMS), adopts a designed kinetic energy conversion factor to convert the vehicle kinetic energy change into the equivalent battery energy consumption. By minimizing the total normalized energy consumption, the energy-orientated vehicle control sequence is calculated. In addition, a logic car-following algorithm is developed to enhance NCMS for avoiding collisions with the potential preceding vehicle on the journey. Second, an improved model predictive control (MPC) is developed with a hierarchical framework, which achieves a balance between optimization and computational efficiency. In the upper level, a global, coarse-grained, iterative dynamic programming is employed to penalize the MPC terminal state, while the lower level performs online rolling optimization of the vehicle within a moderate time step. Thirdly, the performance of the proposed driving strategies is verified through a traffic simulation to evaluate the energy efficiency improvement and processor computation time compared to dynamic programming and constant speed strategy. Finally, a vehicle-in-the-loop test is carried out to validate the feasibility of the proposed two novel driving strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call