Abstract

High-resolution and real-time imaging of particle ion trajectories is essential in nuclear medicine and nuclear engineering. One potential method to achieve high-resolution real-time trajectory imaging of particle ions involves utilizing an imaging system that integrates a scintillator plate with a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera. However, acquiring an EM-CCD camera might prove challenging due to the discontinuation of CCD sensor manufacturing by vendors. As an alternative imaging approach, a low-noise, high-sensitivity camera utilizing a cooled complementary metal-oxide-semiconductor (CMOS) sensor offers a promising solution for imaging particle ion trajectories. Yet, it remains uncertain whether CMOS-based cameras can perform as effectively as CCD-based cameras in capturing particle ion trajectories. To address these concerns, we conducted a comparative analysis of the imaging performance between a CMOS-based system and an EM-CCD-based system for capturing alpha particle trajectories. The results revealed that both systems could image the trajectories of alpha particle, but the spatial resolution with the CMOS-based camera exceeded that of the EM-CCD-based camera, primarily due to the smaller pixel size of the sensor. While the signal-to-noise ratio (SNR) of the trajectory image from the CMOS-based camera initially lagged behind that from the EM-CCD-based camera, this disparity was mitigated by implementing binning techniques on the CMOS-based camera images. In conclusion, our findings suggest that a cooled CMOS camera could serve as a viable alternative for imaging particle ion trajectories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.