Abstract
Electrocoagulation (EC) using iron (Fe), zinc (Zn) and aluminum (Al) electrodes was comparatively applied in the treatment of selenium (Se) in flour production (FP) wastewater. It was indicated that EC treatment with Fe anode obtained highest removal efficiency (79.1%) for Se in the 90 min treatment in the comparative study, which could be attributed to the superior adsorption capacity of in-situ generated iron flocs. Removal of Se resulted from electrodeposition and adsorption to in-situ generated flocs in EC treatment, and the operational conditions significantly influenced the Se removal performance in this work. The results showed the acidic condition and higher current density favored EC treatment on Se removal, EC removed up to 97.8% of Se at pH 4 under 15 mA cm−2, whereas it obtained 83.5% and 50.4% of removal efficiency at pH 7 and 10, respectively. There was competitive adsorption in the process of selenium removal, as the in-situ generated flocs effectively removed 35.6% of humic acid-like (HA-like) substance in FP wastewater after 90 min treatment. The FTIR results showed that HA-like substance mainly contained the protein water hydrogen bond, carboxylate COO antisymmetric stretching and other functional groups. Through the analysis of existence of Se in flocs and wastewater, it can be found that approximately 2.8%–3.92% of Se was removed by electrodeposition process. This study illustrated the Se removal mechanism and provided constructive suggestion for food manufacturing to the metal removal and utilization of advanced treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.