Abstract

We compare the performance and computational cost of 8 kinetic models (3 global and 5 elementary) that describe the finite-rate chemistry of syngas combustion. We apply them in simulating a turbulent jet flame with syngas diluted by 30% nitrogen. We model the turbulence by a modified k-epsilon model and the turbulence-chemistry interaction by the partially stirred reactor approach. To integrate the chemistry equations, we nominally use explicit fifth-order embedded Runge-Kutta ODE solver. But semi-implicit Bulirsch-Stoer and implicit Euler were also used. The computational time depends on the number of reaction steps and the ODE solver. Five models overpredict the maximum flame temperature (by 200 K-320 K). Two models underpredict it by 240 K and 580 K. The global model that is based on the Westbrook-Dryer (1981) model for hydrocarbon fuels gives the best agreement with measurements, and also has low computational demand. Therefore, it is recommended for modeling turbulent syngas flames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.