Abstract
BackgroundDisease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear.ResultsIn this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes.ConclusionsThe study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing.
Highlights
Disease genes cause or contribute genetically to the development of the most complex diseases
Our goal here is to understand the interrelationship between disease genes and drug targets in the context of the human protein-protein interaction (PPI) networks
We further examined the neighborhoods of disease proteins by quantifying the fraction of drug targets that were in an eighthdegree neighborhood around a disease protein
Summary
We comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). Though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.