Abstract
The Z-source inverter (ZSI) is a prominent single-stage power conversion topology compared to traditional voltage source inverter (VSI)/ current source inverter (CSI). It adds the additional buck–boost capability to input voltage with improved reliability. However, the non-minimum phase (NMP) behavior is the major disadvantage of ZSI due to the existence of the right half plane (RHP) zero in the converter transfer functions. The existences of RHP zero destabilize the wideband feedback loops, which imply high gain instability and introduce the constraints on controller design. This paper presents different types of controllers and its design to maintain the required capacitor voltage with better transient response for non-minimum phase ZSI. Different tuning algorithms have been considered for both proportional–integral (PI), and integral–proportional (IP) control schemes. Also, the unified control algorithm has been implemented with both simple boost pulse width modulation (SBPWM) and a modified space vector pulse width modulation (MSVPWM) schemes to obtain the required capacitor voltage. The converter performance is comprehensively analyzed for different controllers and observations are tabulated. The complete analysis has been carried out using the MATLAB/Simulink environment for the proposed models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.