Abstract
Diesel properties determined by ASTM reference methods as cetane index, density, viscosity, distillation temperatures at 50% (T50) and 85% (T85) recovery, and the total sulfur content (%, w/w) were modeled by FTIR-ATR, FTNIR, and FT-Raman spectroscopy using partial last square regression (PLS) and artificial neural network (ANN) spectral analysis. In the PLS models, 45 diesel samples were used in the training group and the other 45 samples were used in the validation. In the ANN analysis a modular feedforward network was used. Sixty diesel samples were used in the neural network training and other 30 samples were used in the validation. Two different ATR configurations were compared in the FTIR, a conventional (ATR1) and an immersion (ATR2) cell. The ATR1 cell presented the best results, with smaller prediction errors (root mean square error of prediction, RMSEP). The comparison of the three PLS models (FTIR-ATR1, FTNIR, and FT-Raman) shows that reasonable values of R 2 and RMSEP were obtained by the FTIR-ATR1 and FTNIR models in the evaluation of density, viscosity, and T50. The PLS/FT-Raman models presented reasonable results only for the T50 property. None of the techniques was able to generate suitable PLS calibration models for the determination of sulfur content. The ANN/FT-Raman models presented the best performances, with all models presenting R 2-values above 85% some of them with RMSEP values significantly smaller than those obtained with FTIR-ATR and FTNIR. The ANN/FT-Raman and ANN/FTIR-ATR1 models were able to estimate the total sulfur content of diesel with 0.01% (w/w) accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.