Abstract

PurposeThe purpose of this paper is to numerically investigate the mildly separated flow phenomena on a near-stall NACA0015 airfoil, by using Detached-Eddy Simulation (DES) type methods. It includes a comparison of different choices of underlying Reynolds-averaged Navier–Stokes model as well as subgrid-scale stress model in Large-Eddy simulation mode.Design/methodology/approachThe unsteady flow phenomena are simulated by using delayed DES (DDES) and improved DDES (IDDES) methods, with an in-house computational fluid dynamics solver. Characteristic frequencies in different flow regions are extracted using fast Fourier transform. Dynamic mode decomposition (DMD) method is applied to uncover the critical dynamic modes.FindingsAmong all the DES type methods investigated in this paper, only the Spalart–Allmaras-based IDDES captures the separation point as measured in the experiments. The classical vortex-shedding and the shear-layer flapping modes for airfoil flows with shallow separation are also found from the IDDES results by using DMD.Originality/valueThe value of this paper lies in the assessment of five different DES-type models through the detailed investigation of the Reynolds stresses as well as the separation and reattachment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call