Abstract
This paper presents a comparative study of choice modeling and classification techniques that are currently being employed in the engineering design community to understand customer purchasing behavior. An in-depth comparison of two similar but distinctive techniques — the Discrete Choice Analysis (DCA) model and the C4.5 Decision Tree (DT) classification model — is performed, highlighting the strengths and limitations of each approach in relation to customer choice preferences modeling. A vehicle data set from a well established data repository is used to evaluate each model based on certain performance metrics; how the models differ in making predictions/classifications, computational complexity (challenges of model generation), ease of model interpretation and robustness of the model in regards to sensitivity analysis, and scale/size of data. The results reveal that both the Discrete Choice Analysis model and the C4.5 Decision Tree classification model can be used at different stages of product design and development to understand and model customer interests and choice behavior. We however believe that the C4.5 Decision Tree may be better suited in predicting attribute relevance in relation to classifying choice patterns while the Discrete Choice Analysis model is better suited to quantify the choice share of each customer choice alternative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.