Abstract

A comparative study of the Weibel instability (WI) driven by anisotropic temperature and the Filamentation instability (FI) by counterstreaming plasmas are made by using a 2D Particle-in-cell code. Under the comparable initial conditions, the linear growth rates of the WI and the FI are almost the same as the theory predicts, but in the nonlinear phase, the maximum and nonlinearly saturated magnetic fields generated by the WI are always smaller than those generated by the FI. It is noted that in the initial linear growth phase, the WI and the FI both have center-filled currents, but in the nonlinear phase, the WI and the FI develop different types of current structures such that the WI maintains a center-filled current structure, whereas the FI develops a hollow current structure. Significant particle acceleration around the drift velocity is observed for the FI, whereas it is almost absent in the WI, which indicates that the enhanced velocity of the electron by particle acceleration is related to the hollow current production in the FI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.