Abstract

Yeast, crucial in beer production, holds great potential owing to its ability to transform into a valuable by-product resource, known as brewer's spent yeast (BSY), with potentially beneficial physiological effects. This study aimed to compare the composition and soluble polysaccharide content of Brewer's spent yeast with those of cultured yeast strains, namely Saccharomyces cerevisiae (SC) and S. boulardii (SB), to facilitate the utilization of BSY as an alternative source of functional polysaccharides. BSY exhibited significantly higher carbohydrate content and lower crude protein content than SC and SB cells. The residues recovered through autolysis were 53.11%, 43.83%, and 44.99% for BSY, SC, and SB, respectively. Notably, the polysaccharide content of the BSY residue (641.90 μg/mg) was higher than that of SC (553.52 μg/mg) and SB (591.56 μg/mg). The yields of alkali-extracted water-soluble polysaccharides were 33.62%, 40.76%, and 42.97% for BSY, SC, and SB, respectively, with BSY comprising a comparable proportion of water-soluble saccharides made with SC and SB, including 49.31% mannan and 20.18% β-glucan. Furthermore, BSY demonstrated antioxidant activities, including superoxide dismutase (SOD), ABTS, and DPPH scavenging potential, suggesting its ability to mitigate oxidative stress. BSY also exhibited a significantly higher total phenolic compound content, indicating its potential to act as an effective functional food material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.