Abstract

Over previous decades, many nature-inspired optimization algorithms (NIOAs) have been proposed and applied due to their importance and significance. Some survey studies have also been made to investigate NIOAs and their variants and applications. However, these comparative studies mainly focus on one single NIOA, and there lacks a comprehensive comparative and contrastive study of the existing NIOAs. To fill this gap, we spent a great effort to conduct this comprehensive survey. In this survey, more than 120 meta-heuristic algorithms have been collected and, among them, the most popular and common 11 NIOAs are selected. Their accuracy, stability, efficiency and parameter sensitivity are evaluated based on the 30 black-box optimization benchmarking (BBOB) functions. Furthermore, we apply the Friedman test and Nemenyi test to analyze the performance of the compared NIOAs. In this survey, we provide a unified formal description of the 11 NIOAs in order to compare their similarities and differences in depth and a systematic summarization of the challenging problems and research directions for the whole NIOAs field. This comparative study attempts to provide a broader perspective and meaningful enlightenment to understand NIOAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.