Abstract

Abstract In this article, we theoretically investigate a spaser (surface plasmon amplification by stimulated emission of radiation) comprising a spherical silver nanoparticle surrounded by a four-level gain medium of quantum dots. The spaser system is pumped coherently and incoherently with the same excitation rate, and the characteristics of the resultant coherent localized surface plasmon (LSP) mode are compared for the two pumping scenarios. We provide a detailed analytical expression for the steady state and demonstrate that the incoherent pump is more suitable for the continuous spaser mode. The reason is better understood by studying the temporal evolution of the number of LSPs N n , where the LSP oscillation starts earlier for an incoherent drive and relaxes to a steady state with a large value of N n . At a large pump rate, the spaser curve shows saturation. In addition, we have found that the resonance peak of the spaser field is independent of coherent and incoherent pumping, whereas the peak amplitude of the field depends on the pump rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.