Abstract

Climate change is a topic that has been widely discussed and debated over recent decades. Scientists have reached a general agreement that the lower atmosphere and the Earth’s surface are definitely getting warmer. The Intergovernmental Panel on Climate Change (IPCC) reported that a gradual but accelerating increase of atmospheric greenhouse gases has occurred since 1750 as result of human activities and among the anthropogenic greenhouse gases, CO2 is the most important. The global atmospheric concentration of CO2 has increased from a pre-industrial value of about 280 ppm to 379 ppm in 2005 (Alley et al., 2007). Temperature has risen by about 0.3-0.6oC since the late 19th century. If CO2 emissions were maintained at 1994 levels, its concentration would increase to about 550 ppm by the end of the 21st century (Chakraborty et al., 2000). Thailand is a member of the United Nation Framework Convention on Climate Change (UNFCCC), which is negotiated by the nations of the world in June 1992 (Michaelowa and Rolfe, 2001). The targets of the UNFCCC is to reducing CO2 emissions from the rate reported for 1990 during the five-year period from 2008 2012. This agreement is called the Kyoto Protocol which Thailand has ratified since August 28, 2002. There are two alternatives to reduce CO2, these include decreasing fossil fuel consumption and increasing carbon sink through forestry activities. According to Article 3.3 of the agreed Kyoto Protocol, some CO2 sources and sinks of forests shall be used to meet the commitments (UNFCCC, 1997). The sources and sinks to be used were measured as verifiable changes in carbon stocks in each commitment period (Terakunpisut et al., 2007; Forest research, 2011). Forestry sectors are known as an important natural brake on climate change since they play an important role in the global both as a carbon sink and source because of their large biomass per unit area of land (Gibbs et al., 2007). The carbon in forests originates from the atmosphere and is accumulated in terms of the organic matter of soil and trees, and it continuously cycles between forests and the atmosphere through the decomposition of dead organic matter (Alexandrove, 2007). Thus, changing carbon stocks in forests can affect the amount of carbon in the atmosphere. If more carbon accumulates in forest through

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call