Abstract
Three-dimensionally ordered macroporous (3DOM) and bulk Co3O4, Eu0.6Sr0.4FeO3 (ESFO), and 3 wt% Co3O4/Eu0.6Sr0.4FeO3 (3Co3O4/ESFO) were fabricated using the PMMA-templating (3DOM-Co3O4 and 3DOM-ESFO), citric acid-assisted hydrothermal (Co3O4-bulk and ESFO-bulk), and incipient wetness impregnation (3Co3O4/3DOM-ESFO and 3Co3O4/ESFO-bulk) methods, respectively. Physicochemical properties of these materials were characterized by means of various techniques, and their catalytic activities were evaluated for toluene combustion. Compared to the nonporous Co3O4 and ESFO samples, the 3DOM-Co3O4, 3DOM-ESFO, and 3Co3O4/3DOM-ESFO samples exhibited higher oxygen adspecies concentrations and better low-temperature reducibility. The 3Co3O4/3DOM-ESFO sample showed the best catalytic activity for toluene combustion, giving the T50% and T90% of 251 and 269°C at 20,000mL/(gh), respectively. The apparent activation energies of these samples were in the range of 72–88kJ/mol. We believe that the higher oxygen adspecies concentration, better low-temperature reducibility, and synergistic action between Co3O4 and 3DOM-structured ESFO were responsible for the excellent catalytic performance of 3Co3O4/3DOM-ESFO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.