Abstract

Biomimetic scaffolds composed of bioactive ceramic-based materials incorporated within a polymeric framework have shown immense promise for use in bone tissue engineering (BTE) applications. However, studies on direct comparison of the efficacy of different bioceramics on bone bioactivity and osteogenic differentiation are lacking. Herein, we performed an in vitro direct comparison of three different bioceramics-Bioglass 45S5 (BG), Laponite XLG (LAP), and β-Tricalcium Phosphate (TCP)-on the physical properties and bone bioactivity of methacrylated collagen (CMA) hydrogels (10% w/w bioceramic:CMA). In addition, human MSCs (hMSCs) were encapsulated in bioceramic-laden CMA hydrogels and the effect of different bioceramics on osteogenic differentiation of hMSCs was investigated in two different culture medium-osteoconductive (without dexamethasone [DEX]) and osteoinductive (with DEX). Results showed that the stability of CMA hydrogels was maintained upon bioceramic addition. Compression testing revealed that BG incorporation significantly decreased (p < 0.05) the modulus of photochemically crosslinked CMA hydrogels. Incubation of TCP-CMA and LAP-CMA hydrogels in simulated body fluid showed deposition of hydroxycarbonate apatite layer on the surface indicating that these hydrogels may be more bone bioactive than BG-CMA and CMA only hydrogels. Cell cytoskeleton staining results showed greater cell spreading in TCP-CMA hydrogels. Furthermore, TCP incorporation significantly increased alkaline phosphatase activity (ALP; p < 0.05) in hMSCs. Together, these results indicate that TCP has superior osteogenic potential compared with BG and LAP and hence should be considered as a bioceramic of preferred choice for use in the biomimetic design of cell-laden hydrogels for BTE applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.