Abstract
β-Glucosidases (BGs) from Aspergillus fumigates, Aspergillus niger, Aspergillus oryzae, Chaetomium globosum, Emericella nidulans, Magnaporthe grisea, Neurospora crassa, and Penicillium brasilianum were purified to homogeneity, and analyzed by isothermal titration calorimetry with respect to their hydrolytic activity and its sensitivity to glucose (product) using cellobiose as substrate. Global non-linear regression of several reactions, with or without added glucose, to a product inhibition equation enabled the concurrent derivation of the kinetic parameters k(cat), K(m), and the apparent product inhibition constant (app)K(i) for each of the enzymes. A more simple fit is not advisable to use as the determined (app)K(i) are in the same range as their K(m) for some of the tested BGs and produced glucose would in these cases interfere. The highest value for k(cat) was determined for A. fumigatus (768 s(-1)) and the lowest was a factor 9 less. K(m) varied by a factor of 3 with the lowest value determined for C. globosum (0.95 mM). The measured (app)K(i) varied a factor of 15; the hydrolytic activity of N. crassa being the most resistant to glucose with an apparent product inhibition constant of 10.1 mM. Determination of (app)K(i) using cellobiose as substrate is important as it reflects to what extent the different BGs are hydrolytically active under industrial conditions where natural substrates are hydrolyzed and the final glucose concentrations are high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.