Abstract
The value of cell-free techniques in the treatment of cartilage defects remains under debate. In this study, cartilage repair of full-thickness chondral defects in the knees of Goettinger minipigs was assessed by treatment with a cell-free collagen type-I gel or a collagen type-I gel seeded with autologous chondrocytes. As a control, abrasion arthroplasty was included. In 18 adult Goettinger minipigs, three full-thickness chondral defects were created in one knee of the hind leg. They were either treated with a cell-free collagen gel, a collagen gel seeded with 2 × 10(5)/ml chondrocytes, or left untreated. All animals were allowed unlimited weight bearing. At 6, 12, and 52 weeks, 6 animals were sacrificed. Immediately after recovery, a non-destructive biomechanical testing was performed. The repair tissue quality was evaluated histologically, and the O'Driscoll score was calculated. After 6 weeks, a high number of cells migrated into the initially cell-free collagen gel. After 1 year, a hyaline-like repair tissue in both groups has been created. As assessed by O'Driscoll scoring and col-II staining, repair tissue quality of the initially cell-free gel was equal to defects treated by cell-seeded collagen gel implantation after 1 year. All untreated control defects displayed a fibrous repair tissue. The mechanical properties represented by the e-modulus were inconsistent in the course of the study. The implantation of a cell-free collagen type-I gel can lead to a high-quality repair tissue in the Goettinger minipig that equals a cell-based procedure after 1 year postoperatively. This study demonstrates the high chondrogenic potential of the applied collagen gel, which might help to overcome the disadvantages inherent in conventional cartilage tissue engineering methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.