Abstract

Class imbalance is a common challenge that is often faced when dealing with classification tasks aiming to detect medical events that are particularly infrequent. Apnoea is an example of such events. This challenge can however be mitigated using class rebalancing algorithms. This work investigated 10 widely used data-level class imbalance mitigation methods aiming towards building a random forest (RF) model that attempts to detect apnoea events from photoplethysmography (PPG) signals acquired from the neck. Those methods are random undersampling (RandUS), random oversampling (RandOS), condensed nearest-neighbors (CNNUS), edited nearest-neighbors (ENNUS), Tomek's links (TomekUS), synthetic minority oversampling technique (SMOTE), Borderline-SMOTE (BLSMOTE), adaptive synthetic oversampling (ADASYN), SMOTE with TomekUS (SMOTETomek) and SMOTE with ENNUS (SMOTEENN). Feature-space transformation using PCA and KernelPCA was also examined as a potential way of providing better representations of the data for the class rebalancing methods to operate. This work showed that RandUS is the best option for improving the sensitivity score (up to 11%). However, it could hinder the overall accuracy due to the reduced amount of training data. On the other hand, augmenting the data with new artificial data points was shown to be a non-trivial task that needs further development, especially in the presence of subject dependencies, as was the case in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.