Abstract

In general, a quantitative interpretation of geophysical data yields information on the nature of subsurface structures of geologic interest besides depth of the source and the associated physical property contrast. However, all geophysical interpretation invariably incurs an inherent ambiguity including VLF-EM method. Techniques such as Karous-Hjelt (KH) current density, Hilbert transform etc. are in vogue to estimate the depth to the source that are either qualitative or semi quantitative. Here, we present a comparative analysis of the depth derived from VLF-EM signals by different methods over a uranium rich basement fractures of Raigarh District, Chhattisgarh, India. The obtained results are based on techniques that are not very common in VLF-EM data interpretation such as Euler deconvolution (ED), Hartley spectral analysis and analytical signal approach of denoised in-phase component realized by Empirical Ensemble Mode Decomposition (EEMD). The estimated depth from ED and Hartley spectral analysis range 10–62 m and 12–40 m respectively are compared with KH pseudo section, Hilbert transform and drilling depth. Overall, the results of the aforesaid techniques have shown satisfactory comparison wherein the Hilbert transform of EEMD de-noised in-phase component of traverse T1 (35 m), Hartely power spectrum of the principal profile PPQ (40 m) and the radially averaged power spectrum (38.8 m and 40 m) are close to the drilling depth. Therefore, the results obtained by methods presented emphasize that these techniques are equally applicable to VLF-EM signals for estimation of depth to subsurface conductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.