Abstract

Chloronicotinic insecticide are a class of pesticides that are commonly used as insecticides. Among the frequently used chloronicotinic pesticide, imidacloprid (IM) was developed in 1986. The residual of this insecticide or any pesticides may have serious public health threats. Both degradation and mineralization of the imidacloprid (IM) in aqueous solution was studied under various experimental conditions using different advanced oxidation processes namely, ultraviolet C (UVC), UVC + TiO2, and UVC + ZnO. All the experiments were performed using a lab-scale batch photoreactor with a working volume of 100mL equipped with low-pressure mercury vapor lamp (9W, 18cm long, Philips Co.), emitting UV radiation with maximum intensity at 254nm. The possible intermediates and a reaction pathway for photocatalytic degradation of the IM were also evaluated. It was observed that under optimal condition for UVC/TiO2 process (C0 = 100mg/L, pH = 7.5, t = 20min, TiO2 dose = 100mg/L), IM was effectively degraded (88.15%) and followed the first order kinetics model. The degradation efficiency increased with increasing of illumination time and is more favorable in alkaline pH compared to acidic pH. Degradation of the IM in photocatalytic process was compared with photolysis showing a significant synergy effect in the case of the photocatalytic degradation process, leading at 20min illumination time to a 36.7% increase of the IM removal efficiency in comparison to the single UVC. The GC/MS chromatograms before and after treatment confirmed the effectiveness of the UVC/TiO2 process in simplifying the nature of IM and its conversion to more simple and degradable compounds. The heterogeneous UVC/TiO2 process was found to be an efficient chemical-less method that is appropriate for degradation of IM from aqueous phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.