Abstract

Abstract Two numerical regimes for the one- and two-dimensional hyperbolic telegraph equations are contrasted in this article. The first implemented regime is uniform algebraic trigonometric tension B-spline DQM, while the second implemented regime is uniform algebraic hyperbolic tension B-spline DQM. The resulting system of ODEs is solved by the SSP RK43 method after the aforementioned equations are spatially discretized. To assess the success of chosen tactics, a comparison of errors is shown. The graphs can be seen, and it is asserted that the precise and numerical results are in agreement with one another. Analyses of convergence and stability are also given. It should be highlighted that there is a dearth of study on 1D and 2D hyperbolic telegraph equations. This aim of this study is to efficiently create results with fewer mistakes. These techniques would surely be useful for other higher-order nonlinear complex natured partial differential equations, including fractional equations, integro equations, and partial-integro equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call