Abstract

This paper presents a comparative analysis for stabilization and control of highly non-linear, complex and multi-variable Double Inverted Pendulum on cart. A Matlab-Simulink model of DIP has been built using governing mathematical equations. The objective is to control both the pendulums at vertical position while cart is free to move in horizontal direction. The control of DIP was achieved using three different soft-computing techniques namely Fuzzy logic reasoning, Neural networks (NN's) and Adaptive neuro fuzzy inference system (ANFIS). The results show that the ANFIS controller is more effective as compared to other two controllers in terms of settling time (sec), maximum overshoot (degree) and steady state error. The regression (R) and mean square error (MSE) values obtained after training of Neural network were adequate and the training error obtained in ANFIS was also optimum. All the three controllers were able to stabilize the DIP system but ANFIS control provides better results as illustrated with the help of graphs and tables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.