Abstract

We compared the neuromuscular junctions on the main closer muscle in the first pair of chelipeds in the snapping shrimp Alpheus heterochelis by serial section electron microscopy. We sought an ultrastructural basis for the different behavioral and physiological functions of these dimorphic claws and for the role of the nervous system in claw transformation. We were unable to detect any statistically significant morphological differences between the junctions. Further, we found the muscle fiber populations and filament arrangements, as well as the electrical properties of the fibers, to be more homogeneous and similar to each other in A. heterochelis than those reported for another species, A. armillatus. We consider our results in light of recent data on the anatomy and electrical properties of the motor neurons within the CNS and conclude that the neural trigger for claw transformation involves factors not revealed by conventional electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call